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a b s t r a c t 

Use of biometrics for person identification has increased tremendously over the past decade, e.g., in large 

scale national identification programs, for law enforcement and border control applications, and social 

welfare initiatives. For such large scale applications with a diverse target population, unimodal biometric 

systems, which use a single biometric trait (e.g., fingerprints), are inadequate due to their limited capac- 

ity. Multimodal biometric systems, which fuse multiple biometric traits (e.g., fingerprints and face), are 

required for large-scale identification applications, e.g., de-duplication where the goal is to ensure that 

the same person does not have two different official credentials (e.g., national ID card) based on different 

credentials. While multimodal biometric systems offer several advantages (e.g., improvement in recogni- 

tion accuracy, decrease in failure to enroll rate), they require large enrollment and de-duplication times. 

This paper proposes an adaptive sequential framework to automatically determine which subset of bio- 

metric traits and biographic information is adequate for de-duplication of a given query. An analysis of 

this strategy is presented on a virtual multi-biometric database of 27,0 0 0 subjects (fingerprints from NIST 

SD14 dataset and face images from the PCSO dataset) along with biographic information sampled from 

the US census data. Experimental results, using three-fold cross-validation, show that without any loss 

in de-duplication accuracy, on average, for 63.18% (of a total of 27,0 0 0) of the queries, only fingerprint 

capture is adequate, for an additional 28.69% of queries, both fingerprint and face are required, and only 

8.13% of the queries needed biographic information in addition to fingerprint and face. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Biometric systems are becoming ubiquitous for automated

erson recognition. These systems are based on the measurement

f purportedly unique anatomical (e.g. fingerprint) and behavioral

raits (e.g. handwriting) of an individual [1] . The applications of

iometric systems range from traditional security applications

e.g., forensics and surveillance) to more recent applications such

s mobile user authentication and social welfare programs. 

The growing prevalence of biometrics is evident from the large

cale deployments at the national level, such as the Biometric

dentity Management System of the US Department of Homeland

ecurity 1 and the Aadhaar project of the Government of India 2 .

he primary purpose of using biometrics in large scale applications

s to ensure that no individual is able to assume more than one

dentity, e.g., for obtaining national identity cards and social ben-
∗ Corresponding author. Fax: + 91-562-2801226. 

E-mail address: pss@alumni.stanford.edu (P.S. Sudhish). 
1 www.dhs.gov/obim . 
2 uidai.gov.in . 

s
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ttp://dx.doi.org/10.1016/j.patrec.2016.10.011 

167-8655/© 2016 Elsevier B.V. All rights reserved. 
fits. The process of detecting and removing duplicate identities

s commonly referred to as de-duplication. Besides, de-duplication

s also required in many other applications, e.g., a user may

ssume duplicate or false identities in border protection or law

nforcement applications, or to avoid harsher penalties for repeat

ffenders 3 . In a civilian scenario, multiple identities may be used

y an individual for tax evasion 

4 . Identity de-duplication is also

eeded when several biometric databases are merged together [2] ,

.g. databases from multiple law enforcement agencies. 

Large-scale biometric systems that rely on a single instance

f biometric evidence (unimodal systems) suffer from limitations

uch as limited capacity to distinguish between a large number

f identities, non-universality (absence of a biometric trait), noisy

ata, and spoof attacks [3] . These limitations can be overcome to
3 www.law.stanford.edu/organizations/programs- and- centers/ 

tanford- three- strikes- project/three- strikes- basics . 
4 businesstoday.intoday.in/story/tax- evaders- hold- multiple- pan- cards- cag- report/ 

/14157.html . 

http://dx.doi.org/10.1016/j.patrec.2016.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.10.011&domain=pdf
mailto:pss@alumni.stanford.edu
http://www.dhs.gov/obim
http://uidai.gov.in
http://www.law.stanford.edu/organizations/programs-and-centers/stanford-three-strikes-project/three-strikes-basics
http://businesstoday.intoday.in/story/tax-evaders-hold-multiple-pan-cards-cag-report/1/14157.html
http://dx.doi.org/10.1016/j.patrec.2016.10.011
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a large extent by using multimodal systems 5 that fuse information

from multiple biometric traits [4] . 

In addition to biometric traits, biographic information (e.g.

person’s name) can also be used for de-duplication. A few prior

studies [5,6] have shown that fusion of biographic information

with biometrics can improve the de-duplication accuracy. However,

biographic information has the following limitations [7,8] : (a) data

entry errors by human operators; (b) lack of a standard format and

standard transliteration; (c) similar biographic information (e.g.

name) of different individuals; and (d) data integrity issues due to

change in certain biographic information e.g., change of address. 

De-duplication in multimodal systems is typically performed

by comparing query biometric and biographic information against

the records stored in the reference database. The final decision on

presence of duplicate identity is based on the fusion of scores from

comparison of biometric and biographic information. To maintain

the integrity of the biometric system [9–11] , the identification

system should be highly accurate and computationally efficient.

Consider the scenario of a national identification system (e.g.,

Aadhaar) with a target enrolment of over a billion individuals.

Even a conservative estimate of false positive identification rate

(FPIR) of the order of 0.0025% translates to tens of thousands of

individuals being falsely identified as duplicates. 

This paper proposes an adaptive sequential fusion of biometric

and biographic information for efficient de-duplication. For each

query, the proposed system selects only those biometric traits and

biographic information deemed necessary, by the sequential se-

lection strategy, to maintain de-duplication accuracy. Experimental

results on a virtual multimodal database 6 (fingerprint images from

the NIST SD 14 fingerprint database [12] , mugshots from the PCSO

database [13] , along with biographic information spawned from

the US Census [14] for 27,0 0 0 subjects) show the viability of the

proposed scheme. More specifically, our system correctly performs

de-duplication of 63.18% of the queries only using fingerprints. For

an additional 28.69% of the queries, fusion of both fingerprint and

face scores allows for correct de-duplication. Further, incorporation

of biographic information is able to de-duplicate the identities of

the remaining queries. 

The rest of the paper is organized as follows. Section 2 briefly

reviews prior work on biometric and biographic fusion. Section

3 describes the proposed algorithm and explains the rationale

behind it. Section 4 presents our experimental results along with

a comparison with published studies. The system limitations and

directions for future research have been presented in Section 5 . 

2. Background 

De-duplication of identities in large-scale applications consists

of comparison and fusion of biometric and biographic information.

2.1. Fusion of multibiometric information 

In most large-scale multi-modal biometric systems, the three

traits most commonly used for de-duplication are fingerprint, iris

and face. Fusion of complementary traits, such as a fingerprints

and iris, is known to provide superior de-duplication performance

[15] . In general, biometric traits can be fused at different lev-

els: sensor level, feature level, match score level, rank level and

decision level. Score level fusion which is the most widely used

procedure is adopted here [16] . 
5 www.nist.gov/itl/idms/nextgen _ biometrics.cfm . 
6 Virtual multimodal databases contain records which are created by consistently 

pairing a user from one unimodal database (e.g., face) with a user from another 

database (e.g., fingerprint). The creation of virtual users is based on the assumption 

that different biometric traits of the same person are independent. [15] 

d  

f

i

fi

.2. Matching of biographic information 

Typical biographic information used for de-duplication consists

f a person’s name, his father’s name, and address. While the use

f biographic information in conjunction with biometric informa-

ion, has been shown to improve de-duplication accuracy [5,6] ,

iographic information alone can lead to possible de-duplication

rrors. This is because different individuals may share the same

iographic information, e.g., name and address. The choice of bio-

raphic similarity score depends on the biographic data type. For

ominal data (e.g., gender, race), the similarity is binary (“same”

r “not same”). On the other hand, for textual data approximate

tring matching distance (e.g., Levenshtein distance [17] ), is often

sed. Other metrics specific to data types are also sometimes used,

.g., geospatial distance to compare addresses. 

.3. Score normalization 

The similarity scores for individual biometric traits and bio-

raphic information are generated by different algorithms and,

herefore, may have different upper and lower bounds (e.g., [0,100],

0,1], etc.). The standard practice, in such a case, is to normalize

he scores to a common range prior to fusion. The choice of score

ormalization scheme (e.g., min-max or z-score normalization),

n general, depends on the underlying score distributions. Given

he normalized scores, different fusion strategies can be used,

.g., density based, classifier based, quality based, or based on a

ynamic score selection strategy [4] . 

.4. Prior work 

Tyagi et al. fused biographic information (name and address)

ith biometric similarity scores (fingerprint and face) in NIST

SSR1 dataset [5,18] . They showed that the recognition accuracy

mproves from 94.73% when no biographic information is used to

8.93% after fusion. Bhatt et al. [6] fused person’s name, father’s

ame, and address with fingerprint. The recognition accuracy

hen only fingerprint is used is 76.6%, which improves to 86.5%

hen biographic information is fused with fingerprints. There are

wo limitations of [5,6] : (i) the state-of-the-art comparison algo-

ithms were not used, and (ii) the computational efficiency was

ot considered. Due to the complementary nature of biometric

nd biographical information, a few commercial systems that fuse

iometric traits and biographic data [19] are available as well.

able 1 compares published studies with the proposed study. 

. Proposed de-duplication framework 

A drawback of the fusion strategies proposed in the literature,

s well as those commonly used in practice, is that they are static

n the sense that, once the traits are fixed, all the corresponding

cores are computed and fused for every query. To address this

imitation, we present a sequential selection strategy that deter-

ines, in real time, which subset of biometric and biographic

nformation is adequate for a given query. 

The proposed adaptive fusion algorithm is based on the prin-

iple of sequential fusion [15] . The order in which the biometric

raits and biographic information is presented to the system is

etermined according to their discriminability 7 . Based on the com-

arative discriminability assessment of traits using the training

ata, traits are selected in the following order: (i) fingerprint, (ii)

ace and (iii) biographic information (see footnote 7). 
7 The discriminability here refers to the accuracy of prediction whether additional 

nformation is required to be considered, and is not necessarily the same as identi- 

cation accuracy. 

http://www.nist.gov/itl/idms/nextgen_biometrics.cfm
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Table 1 

Comparison of studies on fusion of biometric and biographic information. 

Study Target application Biometric trait and 

database 

Biographic information 

and database 

Matching algorithm and 

fusion strategy 

Accuracy Comments 

Bolme et al. [20] Person (celebrity) 

identification 

1331 face images of 118 

celebrities 

Textual Information 

( ∼400 words) from 

celebrity websites 

Biometric : EBGM for 

face 

Biometric : 22% All scores fused for every 

query. 

Biographic : Cosine of 

angle between word 

frequencies 

Biographic : 22% Small database. 

Fusion : Weighted sum Fusion : 35% 

Tyagi et al. [5] De-duplication Two fingerprint match 

(left and right index) 

scores of 3 K subset 

(1.5 K each for training 

and testing) from NIST 

BSSR1 [18] 

Names and addresses 

from an electoral 

record dataset 

Biometric : Precomputed 

fingerprint scores in 

BSSR1 

Biometric : 94.73% All scores fused for each 

query 

Biographic : Matching 

algorithm not specified 

Biographic : 84.40% Small database. 

Fusion : Log-likelihood 

ratio 

Fusion : 98.93% 

Bhatt et al. [6] De-duplication Fingerprints of 5734 

subjects (2 K for 

training and 3734 for 

testing) from various 

datasets. 

Name, father’s or 

husband’s name, 

address 

Biometric : NIST NBIS 

[21] 

Biometric : 76.6% All scores fused for each 

query. 

Gallery augmented with 

additional 10 K 

fingerprints. 

Biographic : Levenshtein 

distance for string 

matching 

Biographic : 69.4% Reported accuracy not 

sufficient for 

de-duplication. 

Fusion : SVM Fusion : 86.5% 

Proposed study De-duplication Fingerprints of 27 K 

subjects from NIST SD 

14 [12] augmented 

with face images of 

27 K subjects from 

PCSO [13] . 

Gender, name and 

father’s name. Names 

derived from US 

Census data [14] . 

Biometric : State of the 

art COTS matchers for 

fingerprint and face. 

Biometric : 99.64% Fingerprint alone is 

adequate for 63.18% of 

the 27 K queries; face 

required for only 

Gender is extracted from 

the PCSO face dataset. 

Biographic : Combination 

of Levenshtein [17] , 

Damerau-Levenshtein 

[22] and editor 

distances [23] 

Biographic : 97.47% 36.82% of the queries; 

biographic information 

required only for 8.13% 

of the queries. 

Fusion : Proposed 

adaptive sequential 

fusion algorithm. 

Fusion : 100.0% 

∗Accuracy is the percentage of subjects for whom the true mate is retrieved at rank 1; COTS matcher stands for Commercial Off-the-Shelf matcher. 
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Once a user’s biometric or biographic information is presented

o the system, an ensemble of veto-wielding [24] logistic regres-

ion classifiers [25] predict whether the corresponding rank-1

core represents a genuine match. The number of classifiers in

he ensemble is chosen based on the trade-off between desired

ccuracy and computational effort. A schematic diagram of this

rediction model is shown in Fig. 1. 

Decision threshold for the ensemble is based on the probability

f false accept. It is set to an extremely low value (e.g., 10 −6 )

hich is learned from a training set. If all the classifiers in the

nsemble agree that the rank-1 score represents a genuine match,

o additional biometric trait or biographic information is needed

o determine the identity of the user in the query. 

The dual safeguard of using a small probability of false accept

s the threshold for prediction, coupled with the authority of each

lassifier to exercise a veto, diminishes the chances of premature

ermination of adaptive fusion. 

.1. Matching of biometric and biographic Information 

We utilize state-of-the-art commercial-off-the-shelf (COTS) 

atchers to obtain comparison scores for both fingerprint and face

mages. Due to licensing restrictions, we are not able to disclose

he names of the vendors, but both of these matchers rank in the

op three in recent NIST evaluations for fingerprint and face. 8 
8 www.nist.gov/itl/iad/ig/biometric _ evaluations.cfm . 

(  

e  

h  
Levenshtein [17] , Damerau-Levenshtein [22] , and Editor dis-

ances [23] are used as distance metrics for biographic information.

evenshtein distance between two strings is the minimum number

f single-character insertion, deletion or substitution operations re-

uired to transform one string to the other. Damerau-Levenshtein

istance also allows for transposition between two adjacent char-

cters. Editor distance is similar to the Levenshtein distance except

hat substitutions are treated as two separate operations – insert

nd delete. The edit distance is converted to a similarity value

y first normalizing it in the [0, 1] range by dividing it by the

aximum possible edit distance between two strings of the same

engths as the given pair of strings. The corresponding similarity

etween two strings is simply ( 1 - normalized edit distance ). The

nal similarity measure for the biographic information is the mean

f similarities derived from Levenshtein, Damerau-Levenshtein,

nd Editor distances. 

.2. Proposed adaptive fusion algorithm 

Our proposed adaptive fusion algorithm is motivated by Arora

t al. [26] who proposed a strategy to determine whether the true

ate of a latent fingerprint query matches at rank-1 out of the

op- k retrieved images. This was based on the “upper outlier” in

he similarity score distribution, under the assumption that scores

ollow an exponential distribution. Intuitively, the presence of a

ingle upper outlier is a strong indication of a true mate at rank-1

correct decision) because of the abysmally low probability of two

vents occurring simultaneously viz., a false match with a very

igh match score and a true mate with an extremely low score.

http://www.nist.gov/itl/iad/ig/biometric_evaluations.cfm
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Fig. 1. Proposed de-duplication framework. Additional biometric or biographic identifiers are selected at each stage by an ensemble of logistic classifiers; fingerprint match 

scores are used here for illustration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

High level description of proposed adaptive fusion algorithm. 

Input : Training set D = { (〈 x (i ) 
j raw 

〉 n 
j=1 

, y (i ) ) } 
Output : Whether or not y ( i ) is at rank-1 

Normalization: z-score normalize: x (i ) 
j 

:= 

x (i ) 
j raw 

−mean ( x j raw 
) 

standardDe v iation ( x j raw 
) 

Training : 

for j ← 1 to n 

f used S core (i ) 
j 

← 

1 
j 

∑ j 
1 

x (i ) 
j 

( f used S core (i ) 
j 

) k ← top k scoresfrom f used S core (i ) 
j 

Train ensemble of m logistic regression classifiers h j (( fusedScore j ) k ) 

to predict { 1 , y (i ) is not at rank − 1 

0 , otherwise 

End 

Implementation : 

Set logistic regression prediction threshold η to an arbitrarily low value (e.g., 

10 −6 ) 

Initialize: j ← 0 

do: 

j ← j + 1 

f used S cor e j ← 

1 
j 

∑ j 
1 

x j 

( fusedScore j ) k ← top k scores from fusedScore j 
while 

∑ 

m h j ( ( f used S cor e j ) k ) > 0 and j < n 

Result : Duplicate, if exists, is at rank-1. 

i  

f

 

m  

g  

t  

p  

g  

[  

u  

s  

o  

o  
Arora et al. adopted this strategy to determine whether additional

feature markup is needed for the latent query [26] . 

An optimal parametric distribution that fits the biometric and

biographic match scores may not be available, so a soft computing

approach is proposed. The proposed model consists of an en-

semble of m veto-wielding [24] logistic regression classifiers [25] .

A logistic regression classifier is based on the logistic (sigmoid)

function used for the two-class classification problem. The logistic

function of a variable z is given by Eq. (1) . 

f ( z ) = 

1 

1 + e −z 
(1)

The value of the function f(z) lies in (0, 1), and for the purpose

of classification here, is seen as the probability of the alternate

hypothesis ( H 1 : additional biometric or biographic information is

required); the probability of null hypothesis ( H 0 : the information

presented is sufficient to reach a final decision) is ( 1 – f(z) ). 

The variable z is a weighted sum of k input features used for

classification, as given by Eq. (2) . 

z = 

k ∑ 

i =0 

θi s i (2)

where s i is the i th feature and θ i is the weight assigned to s i . The

bias term s 0 is set to unity. 

The proposed algorithm uses the top k scores (with the high-

est scores for the subject being de-duplicated against enrolled

subjects) as inputs s i to the logistic function. The value of k is

chosen to avoid overfitting. The output f(z ) is interpreted as the

probability that the rank-1 score does not represent a genuine

match. Additional biometric or biographic information is deemed

to be necessary if this probability is above a pre-determined

threshold η. Each of the m classifiers in the ensemble is trained

on different training subsets obtained via bootstrapping [27] . Each

individual classifier in the ensemble wields a veto such that the

process of further matching and fusion of available biometric and

biographic information is terminated only when all classifiers in

the ensemble unanimously [24] predict that additional information
s not required. A high level algorithm of the proposed adaptive

usion method is given in Table 2. 

In Table 2 , x (i ) 
j raw 

is the vector consisting of raw (not nor-

alized) match scores for training example (probe) i against the

allery for biometric or biographic information j and y ( i ) denotes

he true identity of the subject. The total number of identifiers

er subject is denoted by n . Since different matching algorithms

enerate scores in different ranges and with different distributions

15] , score normalization is essential in score level fusion. To avoid

pper outlier scores from compressing a majority of the biometric

core distribution to a small range, z-score normalization (as

pposed to min-max), as illustrated in Table 2 , was used. Fusion

f scores for all scenarios discussed in this and the subsequent
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Fig. 2. Examples of biometric and biographic information collected during enroll- 

ment. (a) Fingerprint [12] ; (b) face [13] ; (c) subject’s name [14] ; and (d) her father’s 

name [14] . 

Fig. 3. CMC curves for unimodal identifiers. 
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F  
ections have been performed on z-score normalized scores by

mploying the sum fusion rule [4] . 

A separate ensemble is trained at each stage of the algorithm

sing bootstrap aggregation with the same number of training ex-

mples for each classifier as the size of the training set. Sup-

ose the available identifiers include a fingerprint, face and subject

ame. If the training data indicates that fingerprint has the best

iscriminability, followed by face, and finally subject name, then

he ensemble for the first stage is trained using the fingerprint

raining scores, followed by score fusion of fingerprint and face. 

. Experimental evaluation and analysis 

Below we describe the experiments to show the accuracy and

fficiency of the proposed algorithm on a large scale benchmark

ataset under various unimodal and multimodal scenarios. 

.1. Dataset 

The biometric database used for experiments consists of two

ngerprint images for each of 27,0 0 0 subjects from the NIST

pecial Database 14 [12] and two mugshot face images for each of

7,0 0 0 subjects sampled from the PCSO dataset [13] . The virtual

i-modal database was created by randomly coupling a face in

he PCSO database with a finger in the NIST SD14 database. The

rst impression of each finger is used to form the gallery while

he second impression is used as probe. For face, the image

cquired at a younger age was used as the gallery and the one

t an older age as probe. The biometric databases used here have

een anonymized. Since no large scale benchmark datasets for

iographic information is available, the biographic information

as assigned to each subject first using the gender information

n the face database and then randomly drawing the first name,

ast name and father’s name by mimicking statistics from the US

ensus [14] . An example of a virtual subject is shown in Fig. 2. 

In practice, the name may not always be identical because of

ossible human data entry errors (see Figs. 9, 10 for example).

o simulate these errors, a crowdsourcing experiment on Amazon

echanical Turk 9 was conducted by us with about a hundred

orkers. Each worker was required to enter the textual data by

ooking at the data presented to them as an image (so that they

o not simply copy-paste the text). A simple statistical model

hat embodies the characteristics of textual variations and human

rrors was created. The probabilistic model consists of insertion,

eletion and replacement of random characters, swapping of adja-

ent characters in different parts of the name, and replacement of

arts of name with only the initials. 

.2. Matching of unimodal information 

Two state of the art commercial matchers (COTS-A for finger-

rint and COTS-B for face) were used to compute the biometric

imilarity scores; the average similarity value of Levenshtein,

amerau-Levenshtein, and Editor Distances (see Section 3.1 ) was

sed for matching of biographic information. 

The average similarity value of edit distances outperforms the

evenshtein distance which was used in a previous study [6] .

his is primarily because in [6] , variation in name spellings was

ssigned a similarity value based not only on the number of char-

cter differences but also on the length of the name. Intuitively,

wo long names with a single character distance have a higher

imilarity than two short names with the same character distance.

he proposed algorithm for matching of biographic information
9 www.mturk.com . 

i  

F  

s

utperforms the Levenshtein distance by about 4% for top-10

anks (including rank-1 accuracy) on the data derived from the US

ensus information [14] . 

The cumulative match characteristic (CMC) curves for all the

nimodal identifiers used in this study (fingerprint, face, subject’s

ame, and father’s name) are shown in Fig. 3 . As expected, the

wo biometric identifiers, face and fingerprint, outperform the two

iographic identifiers, subject’s name and father’s name. Face and

ngerprint matching performance are comparable with rank-1 ac-

uracy of ∼95%. In earlier studies (e.g., [6] ) these accuracies were

ignificantly lower. It should be noted that two state-of-the-art

OTS were used for the experiments and recognition performance

epends on the quality of data. 

An example where the rank-1 fingerprint score represents a

rue mate is shown in Fig. 4 , while another example where finger-

rint matching is not sufficient, i.e., the rank-1 fingerprint score

oes not represent a true mate, is shown in Fig. 5 . An example

here the rank-1 face score represents a true mate is shown in

ig. 6 , while another example where face matching is not sufficient

s shown in Fig. 7 . The two face mugshot images per subject in

igs. 6 and 7 above have varying time lapses; the age of the

ubject at the time of image acquisition is noted in the caption. 

http://www.mturk.com
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Fig. 4. Example of successful fingerprint match where the rank-1 score represents 

a true mate. (a) Probe image, and (b) rank-1 retrieved gallery image. 

Fig. 5. Example where fingerprint match alone is not sufficient. (a) Probe image; 

(b) rank-1 gallery image of a different subject; and (c) gallery image of true mate 

retrieved at rank 24,684. 

Fig. 6. Example of successful face match where the rank-1 score represents a true 

mate. (a) Probe image, age 31.0 years; and (b) rank-1 gallery image, age 28.6 years. 

Fig. 7. Example where face match alone is not sufficient. (a) Probe image, age 47.6 

years; (b) rank-1 gallery image of a different subject, age 47.4 years; and (c) gallery 

image of true mate, age 44.5 years, retrieved at rank 16,372. 

 

 

 

 

Fig. 8. CMC curves for biometric and biographic fusion. Fingerprint and face scores 

are fused for biometric traits, while subject’s name and father’s name are fused for 

biographical traits. 

Fig. 9. Examples of successful biographic match where rank-1 score represents a 

genuine match. (a) Probe subject’s name and father’s name for biographic example 

1; (b) rank-1 subject’s name and father’s name; (c) probe subject’s name and fa- 

ther’s name for biographic example 2; and (d) rank-1 subject’s name and father’s 

name. 

R SMIT
M SMTH

CARL SMITH
MARK SMITH

ROSEMARIE SMITH
MICHAEL SMITH

(a) (b) (c)

Fig. 10. Example where biographic match alone is not sufficient. (a) Probe subject’s 

name and father’s name; (b) rank-1 subject’s name and his father’s; and (c) true 

mate’s name and father’s name retrieved at rank 211. 
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10 The significance level α provides a trade-off between desired robustness and 

computational effort required for fusion of additional information. The nominal 
4.3. Information fusion 

A comparative evaluation, where only the biographic informa-

tion or the biometric information is used, is shown in the CMC

curves in Fig. 8 . This figure also shows the performance gain when

both the biometric traits (face and fingerprint) are fused with the

biographic information (subject’s name and father’s name). 
An example where the rank-1 retrieved biographic match is

 genuine match is shown in Fig. 9 , and an example where bio-

raphic matching alone does not retrieve the true mate at rank-1

s shown in Fig. 10. 

.4. Analysis and performance evaluation of adaptive fusion 

The 27,0 0 0 subjects in our database were randomly parti-

ioned into three subsets (90 0 0 in each subset) for three-fold

ross-validation. One of the three subsets was retained for testing

he model, by turn, and the remaining two subsets were used as

raining data. We report the average performance across the three

olds. In our experiments, each fold provides exactly the same

erformance, so the variance is zero. The ensemble in both stages

training and testing) consisted of m = 100 classifiers, with top

 = 5 highest scores being supplied to each of the classifiers as

nput. The values of m and k have been determined empirically

rom the performance on training set. Note that the training and

est sets here have similar characteristics. 

The adaptive fusion with single outlier detection proposed by

rora et al. [26] , which is based on standard statistical test, was

lso implemented with significance level 10 α = 0.99 for compari-
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Table 3 

Identification accuracy and efficiency of fusion algorithms. 

Fusion Algorithm Rank-1 

Accuracy 

Face matching 

required (% queries) 

Biographic 

Information 

required (% queries) 

Static fusion of all 

traits 

100.0% 100.0% 100.0% 

Adaptive fusion 

with single 

outlier detection 

[26] 

100.0% 47.29% 18.64% 

Proposed adaptive 

fusion algorithm 

100.0% 36.82% 8.13% 

Fig. 11. Comparative evaluation of number of subjects that require matching and 

fusion of various biometric traits and biographic information. Total no. of subjects 

is 27,0 0 0. Rank-1 identification accuracy after fusion is 10 0% in all cases. 
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h

Fig. 12. Example where fingerprint alone is not sufficient for retrieval at rank-1. 

After score level fusion of fingerprint and face, rank-1 retrieval is successful. Bio- 

graphic information is not needed for this query. (a) Probe fingerprint image; (b) 

gallery fingerprint image of genuine subject retrieved at rank 4; (c) probe face im- 

age, age 36.5 years; and (d) gallery face image of genuine subject, age 31.0 years, 

retrieved at rank 1. 
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on. The exponential distribution was determined to be the best

t. 11 The evaluation, in terms of fusion efficiency, is presented in

able 3 and Fig. 11 . Note that adaptive fusion with single outlier

etection does not require any training. 
alue of 0.99 is empirically chosen here from the training set based on 100.0% rank- 

 accuracy requirement. 
11 www.mathworks.com/help/stats/model-data-using-the-distribution-fitting-tool. 

tml . 
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a  

f

Example query where fingerprint alone is sufficient by itself

or decision was illustrated in Fig. 4 , while example query where

ngerprint alone is insufficient was shown in Fig. 5 . The ensemble

f classifiers correctly predicts that no further information beyond

ngerprint is necessary in the former case, while concludes that

vidence from fingerprint is inadequate in the latter case. An ex-

mple where fingerprint alone is not sufficient for rank-1 retrieval,

ut its fusion with face lends adequate confidence for rank-1

etrieval is shown in Fig. 12 . No biographic information is needed

ere. Another example where fusion of fingerprint and face are

ot adequate for rank-1 retrieval is shown in Fig 13 . Fusion of

ngerprint, face and biographic information does lead to correct

ank-1 retrieval. 

.5. Predicted effort to error trade-off curve 

While biometric fusion has widely been studied, to our knowl-

dge, there has not been a systematic study of the trade-off

etween the effort required in computing and fusing match scores

or individual traits and the benefit extended through reduction

n error rates due to fusion. A new metric, called the predicted

ffort to error trade-off (PEET) curve, is defined here to study the

elative efficiency of fusion algorithms. 

The PEET curve charts the predicted effort as the percentage

f subjects where fusion of additional information was predicted

o be required, against the recognition error (in terms of rank-1

dentification accuracy). The PEET curve comparing the efficiency

f the proposed adaptive fusion algorithm to the adaptive fusion

lgorithm with single outlier detection using standard statistical

est [26] is shown in Fig. 14 after the first stage (fingerprint).

t may be observed from the figure that the proposed adaptive

usion algorithm converges to the minimum error at a faster rate. 

.6. Consolidated results 

Considering fingerprint, face, subject’s name and father’s name

s the available identifiers, match scores were normalized and

used by using the various identifiers and their combinations. 

http://www.mathworks.com/help/stats/model-data-using-the-distribution-fitting-tool.html
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Fig. 13. Example of adaptive fusion. (a) Probe fingerprint image; (b) gallery finger- 

print image of genuine subject retrieved at rank 697; (c) probe face image, age 34.5 

years; and (d) gallery face image of genuine subject, age 24.3 years, retrieved at 

rank 17. After fusion of fingerprint, face and biographic information, true mate is 

retrieved at rank 1. 

Fig. 14. PEET curve after the first stage (fingerprint) comparing the adaptive fusion 

with single outlier detection [26] with the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

Table 4 

A comparison of rank-1 identification rates of individual identifiers and 

various combinations a . 

Identifier or subset Rank-1 identification rate 

Fingerprint 94.93% 

Face b 95.56% 

Name 89.00% 

Father’s name 89.02% 

Fingerprint + face 99.64% 

Name + father’s name 97.47% 

Fingerprint + name + father’s name 99.84% 

Face + name + father’s name 99.98% 

Fingerprint + face + name + father’s name 10 0.0 0% 

Proposed adaptive fusion algorithm 

c 10 0.0 0% 

a Total 27,0 0 0 queries with gallery consisting of another instance of the 

same 27,0 0 0 subjects; Sum fusion of z-score normalized scores. 
b Some of the face images in the PCSO [ 13 ] dataset are mislabeled, but 

have been used to replicate a realistic scenario. 
c Aggregate results of three-fold cross validation. 
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A summary of rank-1 identification rate for the various identi-

fiers alone and their combinations is presented in Table 4. 

5. Summary 

The de-duplication of identities is necessary in any biometric

identification system. We have proposed an algorithm that adap-

tively and sequentially fuses scores from biometric and biographic

information for identity de-duplication. Experimental results show

the proposed algorithm not only achieves high accuracy but

also results in computational efficiency. In particular, our system

correctly predicts that for 63.18% of the queries (in total 27,0 0 0

queries) only fingerprint is sufficient to be identified at rank-1. For

an additional 28.69% of the queries, fusion of fingerprint and face
cores is needed, while biographic information is needed only for

he remaining 8.13% of the queries. 

It would be desirable to extend this study for databases involv-

ng a larger number of subjects. Operational databases, such as

he Aadhaar Project in India, typically have ten-print fingerprints,

oth irises, face, and biographic information. Another avenue for

urther study would be to incorporate biometric quality in the

roposed fusion algorithm. For example, the sequence in which

he identifiers are considered for a subject may also be based on

he quality of the individual identifiers captured for that particular

ubject, instead of the globally most reliable identifier. Another

venue for research is open set identification. 
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